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Abstract

We use observations of robust scaling behavior in clouds and precipitation to derive constraints on how
partitioning of precipitation should change with model resolution. Our analysis indicates that 90–99% of stratiform
precipitation should occur in clouds that are resolvable by contemporary climate models (e.g., with 200 km or
finer grid spacing). Furthermore, this resolved fraction of stratiform precipitation should increase sharply with
resolution, such that effectively all stratiform precipitation should be resolvable above scales of ∼50 km. We show
that the Community Atmosphere Model (CAM) and the Weather Research and Forecasting (WRF) model also
exhibit the robust cloud and precipitation scaling behavior that is present in observations, yet the resolved fraction
of stratiform precipitation actually decreases with increasing model resolution. A suite of experiments with
multiple dynamical cores provides strong evidence that this ‘scale-incognizant’ behavior originates in one of the
CAM4 parameterizations. An additional set of sensitivity experiments rules out both convection parameterizations,
and by a process of elimination these results implicate the stratiform cloud and precipitation parameterization.
Tests with the CAM5 physics package show improvements in the resolution-dependence of resolved cloud fraction
and resolved stratiform precipitation fraction.

1 Introduction

As computing resources increase, climate models have
been pushed to ever higher resolutions (Dennis et al., 2012b),
but Williamson (2008), Li et al. (2011a), and Williamson
(2012) provide recent examples of studies showing that some
aspects of model climatology do not converge as resolution
increases. This lack of convergence is problematic because
climate change impact studies often require climatic infor-
mation at the small scales characteristic of, for example, a
single watershed (Kanamitsu and Kanamaru, 2007; Cald-
well et al., 2009). High-resolution climate model simula-
tions are a seemingly obvious way to provide climatic infor-
mation at these scales, but non-convergent behavior (e.g.,
extreme precipitation that systematically increases with in-
creasing resolution) complicates interpretation of climate
change studies (Li et al., 2011a,b). Therefore it seems pru-
dent to improve the resolution-dependent behavior of cli-

mate models to avoid such non-convergent behavior.
This non-convergent behavior has been somewhat mit-

igated by the standard practice of model tuning, through
which model parameters are adjusted so that certain as-
pects of the model climatology (e.g., the top-of-atmosphere
radiative balance) match observations (Hack et al., 2006). It
is necessary, though perhaps unsatisfying, to adjust model
parameters in this way so that the model emulates phe-
nomena and exhibits climate sensitivities that are presum-
ably also similar to reality, though this is not guaranteed.
Murphy et al. (2004) show that the climate sensitivity of
climate models is strongly controlled by the exact combina-
tion of tunable parameters. The need for scale-dependent
tuning provides support for a fundamental reformulation of
the processes in question so that they in fact do exhibit the
appropriate behavior across scales. Further, tuning away
resolution dependencies only works in the context of mod-
els with globally quasi-uniform grids. With the advent and
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increasing utilization of atmospheric models with variable
and adaptive meshes, this is no longer a tenable strategy.

Before endeavoring to improve resolution-dependent be-
havior, it is a critical prerequisite to understand exactly
how model output should change with resolution. For some
aspects of model climatology, the answer is obvious: there
should be no change. For example, under radiative-convective
equilibrium the time-mean value of the global-mean precip-
itation rate is constrained by global-mean tropospheric ra-
diative divergence (Mitchell et al., 1987). Therefore, to the
extent that a model maintains a constant radiative diver-
gence as resolution changes, then the global-mean precipita-
tion rate should not change either. However, for aspects of
climatology that are inherently scale dependent, such as the
variance of atmospheric state variables, clouds, and precipi-
tation (Pressel and Collins, 2012; Kahn et al., 2011; Nastrom
and Gage, 1985; Wilcox and Ramanathan, 2001; Lovejoy
et al., 2008), model statistics should almost certainly de-
pend on resolution. Observations of scale dependence are
key to understanding resolution dependence in models and
ultimately key to building model schemes that are properly
scale-aware.

This manuscript describes an initial effort to use ob-
servations of scaling in clouds and precipitation to develop
constraints on resolution-dependent cloud and precipitation
behavior in atmospheric models. In Section 3, we use the
observations of Wilcox and Ramanathan (2001) and Wood
and Field (2011) to derive how clouds and precipitation
should partition between resolved and unresolved compo-
nents as resolution changes. Despite having cloud and pre-
cipitation distributions that agree well with the Wilcox and
Ramanathan (2001) and Wood and Field (2011) data, we
show in Sections 3 and 5 that the Community Atmosphere
Model (CAM) and the Weather Research and Forecasting
model (WRF) both exhibit resolution-dependent behavior
that opposes the expected dependence on resolution. We
define the term ‘scale-incognizant’ as the antonym of ‘scale-
aware’ to describe such resolution-dependent model behav-
ior that is either internally inconsistent or is in conflict with
observed scale dependence. We examine potential causes of
this dynamical core-independent, scale-incognizant behav-
ior in Section 7.

2 Data and Methods

We use three primary sources of data in this analysis:
digitized precipitation and cloud data from Wilcox and Ra-
manathan (2001), the global cloud-size distribution from
Wood and Field (2011), and output from a number of ide-
alized (aquaplanet) experiments with CAM (Neale et al.,
2010). In Section 5, we use an additional set of aqua-
planet simulations from both CAM and tropical-channel
WRF (Skamarock et al., 2005); for the sake of continuity,
we describe these simulations in Section 5.

2.1 Observations

We use two sets of data from Wilcox and Ramanathan
(2001): the cloud number distribution (their Figure 2a), and
the cloud-size dependence of precipitation intensity (their
Figure 5a). Both of these sets of data are derived from two
months of Tropical Rainfall Measuring Mission (TRMM)
data (Kummerow et al., 1998) that is centered over the trop-
ical Indian Ocean in the ± 20◦ latitude, 40◦–120◦ longitude
region. Wilcox and Ramanathan (2001) binned the origi-
nal 5 by 7 km resolution TRMM data onto a 0.25◦ × 0.25◦

grid for the purpose of collocating the TRMM data with
top-of-atmosphere radiative flux measurements. Wilcox and
Ramanathan (2001) use a clustering algorithm to identify
contiguous clouds over oceanic grid cells. The cloud areas
determined by the algorithm are used to derive the cloud
number distribution (i.e., the number of clouds per unit area
per unit size, with a given size), and the corresponding area-
averaged precipitation rates are used to derive the cloud-size
dependence of precipitation intensity. We use digitization
software1 to convert the graphical representation of the data
presented in their manuscript to tabular form, which we use
directly in the analysis presented in Section 3.

Wood and Field (2011) combine aircraft in-situ measure-
ments of cloud sizes with data from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) instrument on-
board NASA’s Terra satellite. They utilize two full years
of daytime scenes (nominally 10:30 local time) at a na-
tive 1 km resolution from the MOD06 level 2 (collection 5)
cloud product (Platnick et al., 2003). From each scene, they
identify contiguous clouds both by the cloud chord length
measured in the along-track direction of the satellite and
by cloud area obtained from a recursive algorithm to clus-
ter adjacent cloudy pixels. Wood and Field (2011) com-
bine the MODIS cloud length estimates with aircraft in-situ
measurements of cloud dimensions to show that cloud sizes
are distributed as a single power law from sizes of 0.2 km
to approximately 2000 km. They derive a cloud-size dis-
tribution from the MODIS cloud areas to show that this
power-law dependence of cloud size is not an artifact of the
cloud identification method. Wood and Field (2011) find
that the cloud length distribution is well fit by the func-
tion N(L) ∼ Lβ exp[−(L/L∗)

2], in which the Lβ term de-
scribes the power-law dependence and the exp[−(L/L∗)

2]
term describes the rapid steepening of the power-law slope
that occurs for clouds that have chord lengths larger than
a scale-break at approximately L∗ = 2100 km. They also
find that the cloud area distribution is well fit by the func-
tion N(A) ∼ Aβ

′
though with a slightly steeper power-law

slope, i.e., β′ < β < 0.

1Engague Digitizer, which is available for free under a GNU license
at http://digitizer.sourceforge.net
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2.2 Model

We also use output from a set of idealized global climate
model simulations from the Community Atmosphere Model
version 4 (CAM4) at several different resolutions. The sim-
ulations have a prescribed SST distribution that follows
the aquaplanet control experiment protocol described by
Neale and Hoskins (2000). Under this protocol, all bound-
ary conditions and atmospheric forcings are specified in a
zonally and hemispherically symmetric manner such that
the statistics of the resulting climate are also zonally and
hemispherically symmetric. Diurnally cyclic insolation is
imposed under fixed equinoctial (hemispherically symmet-
ric) conditions. There are no radiatively active aerosols, and
well-mixed greenhouse species fixed at present-day concen-
trations are the only radiatively active gases. Cloud con-
densation nuclei concentrations are set to a time-invariant,
zonally-symmetric distribution appropriate for oceanic con-
ditions. The simulations start from a state taken from a
previous aqua-planet simulation. We run each simulation
for six months, and we discard the first month to allow
for model spin up. These CAM4 simulations are all run in
atmosphere-only mode with the spectral Eulerian dynamical
core (referred to hereafter simply as the ‘Eulerian dycore’),
with a 10 minute time step for the physics parameteriza-
tions, and with 26 vertical levels. In Section 3, we analyze
four such simulations run at four different resolutions of
T42, T85, T170, and T341. The T denotes triangular zonal
and meridional mode truncation, and the number denotes
the highest wavenumber retained in the spectral expansion
of the dynamical fields. The equivalent zonal resolutions of
the associated transform grid at the equator are 310 km,
156 km, 78 km, and 39 km. Model parameters, including
timestep, were held constant among all the simulations, so
that any difference among the simulations comes only from
the difference in horizontal resolution. Table 1 lists the val-
ues of unconstrained parameters used in these simulations.

The treatment of clouds and precipitation in CAM4 is
described fully by Neale et al. (2010), however we briefly
summarize some relevant details here. CAM4 uses the Zhang
et al. (2003) macrophysics parameterization and the Rasch
and Kristjánsson (1998) microphysics parameterization. The
Zhang macrophysics parameterization calculates cloud frac-
tion, and it relates changes in this fraction to tendencies in
cloud condensation and evaporation. Stratiform cloud cov-
erage is proportional to the square root of relative humidity
when relative humidity exceeds a specified threshold (91%
for clouds at pressures above 750 hPa, and 70% for clouds
below), and it is zero otherwise. Maximal cloud coverage of
99.9% occurs when relative humidity reaches 100%. Stratus
cloud fraction, which is distinct from stratiform cloud frac-
tion, is proportional to lower tropospheric stability. Convec-
tive cloud fraction is proportional to convective mass flux,
with different coefficients of proportionality for the deep and

shallow convection parameterizations. Total cloud fraction
for a given grid cell is diagnosed as the convective cloud
fraction plus the larger of the stratiform and stratus cloud
fractions.

The Rasch-Kristjánsson parameterization is a single mo-
ment bulk microphysics parameterization that prognoses
cloud condensate (with liquid and ice as separate classes)
and includes formulations of autoconversion, collection/ ac-
cretion, and sedimentation (Rasch and Kristjánsson, 1998;
Neale et al., 2010). Autoconversion of liquid condensate be-
gins when the condensate mixing ratio exceeds a threshold
value; the threshold value varies solely as a function of pres-
sure for liquid condensate and as a function of temperature
for ice condensate. The autoconversion tendency is propor-

tional to q
7/3
l for in-cloud liquid condensate and to q1i for

in-cloud ice condensate. When cloud fraction is less than
100%, in-cloud condensate mixing ratios are estimated by
dividing the cell-mean mixing ratio by cloud fraction (or by
2% if cloud fraction is less).

In anticipation of Section 6.6.2, in which we compare
CAM4 and CAM5 simulations, we also summarize some rel-
evant details of the CAM5 cloud and precipitation parame-
terizations, which are described fully by Neale et al. (2012).
CAM5 uses the macrophysics parameterization described by
Park et al. (In Preparation) and Neale et al. (2012) and the
Morrison and Gettelman (2008) microphysics parameteri-
zation. In the Park macrophysics parameterization, strati-
form coverage is exclusively a function of relative humidity
when relative humidity goes above a specified threshold (the
threshold algorithm is the same as in CAM4); the functional
form comes from assuming that relative supersaturation has
a triangular distribution within each cell (see Neale et al.
(2012) for the exact form). The CAM5 physics package
does not calculate a separate stratus cloud fraction, and to-
tal fraction is calculated as the sum of the stratiform and
cumulus cloud fractions.

The Morrison-Gettelman scheme (Morrison and Gettel-
man, 2008; Gettelman et al., 2008; Neale et al., 2012) is a
bulk two moment microphysics parameterization that prog-
noses cloud condensate (with liquid and ice as separate
classes) and cloud droplet number. It includes formula-
tions of droplet activation, condensation/deposition, evap-
oration/sublimation, autoconversion, accretion, collection,
sedimentation, homogenous and heterogenous freezing, and
ice melting. The autoconversion tendency is proportional to
q2.47l N−1.79 for in-cloud liquid condensate. Autoconversion
of in-cloud ice condensate uses a formulation that converts
part of the upper fraction of the assumed cloud number
and ice mixing ratio distributions into snow at a charac-
teristic 3-minute timescale. The liquid and ice autocon-
version tendencies are both proportional to the liquid and
ice cloud fractions respectively. When cloud fraction is less
than 100%, in-cloud condensate mixing ratios are estimated
by dividing the cell-mean mixing ratio by cloud fraction (or

3



D
RA
FT

Parameter Name Value Default units
Deep convection precip. production efficiency 0.045 0.0035 unitless

Convective precipitation evaporation efficiency 1.0 · 10−6 1.0 · 10−6 unitless
Shallow convection precip production efficiency 1.0 · 10−5 1.0 · 10−4 unitless

Shallow convection CAPE removal timescale 1800 1800 s
Stratiform precipitation evaporation efficiency 5.0 · 10−6 5.0 · 10−6 unitless

Threshold for autoconversion of cold ice 2.0 · 10−5 1.8 · 10−5 kg/kg
Threshold for autoconversion of warm ice 40.0 · 10−5 20.0 · 10−5 kg/kg

Threshold for autoconversion of liquid droplets 1.0 · 10−6 1.0 · 10−6 m
Minimum RH threshold for high stable clouds 0.70 0.77 unitless
Minimum RH threshold for low stable clouds 0.91 0.92 unitless

Threshold for low stable cloud classification 75000 75000 Pa
Stokes ice sedimentation fall speed 1.0 1.0 m/s

Table 1: A list of tuning parameters and values used in this study in comparison to default values from a 1-degree
simulation with the Finite Volume dynamical core.

by 0.01% if cloud fraction is less).
Throughout the manuscript, we refer to non-convective

precipitation as stratiform precipitation (i.e., precipitation
from the Rasch-Kristjánsson paramterization in CAM4 and
from the Morrison-Gettelman parameterization in CAM5).
We distinguish between resolved and unresolved stratiform
precipitation as precipitation coming from columns with
and without ‘resolved clouds’ respectively, which we define
in the next section.

3 Scaling in CAM4

3.1 Scaling of Cloud Sizes

To compare the scaling behavior of CAM4 with the ob-
servations from Wilcox and Ramanathan (2001) and Wood
and Field (2011), we follow the methodology of Wood and
Field (2011) to identify contiguous clouds from instanta-
neous, 3-hourly model output. We define such contiguous
clouds as ‘resolved clouds’ (i.e., clouds with a horizontal
area at least as large as a model grid cell). Following Wood
and Field (2011), we classify a resolved cloud in the model
as a set of one or more contiguous grid columns where the
column-total cloud fraction is greater than 99%. We de-
fine contiguous columns as those that share a side, and we
utilize a recursive algorithm to identify contiguous sets of
cloudy columns. As in Wood and Field (2011) and Yuan
(2011), we find that our results are insensitive to whether
or not we include corner-sharing cloudy columns as part of
the same cloud. We also find that our results are insen-
sitive to the cloud fraction threshold in the resolved cloud
classification, with the exception that the global fractional
coverage of resolved clouds approaches 100% as the cloud
fraction threshold approaches 0% (which happens as a mat-
ter of course, since a threshold of 0% should identify every
model cell as being cloudy). Clouds in nature are essen-

tially proxies for saturated regions of the atmosphere, so
the use of a high cloud fraction threshold allows for a simple
comparison with observations, since it effectively identifies
columns that contain a saturated or near-saturated region.
This avoids the known difficulty of comparing the model
cloud fraction field with observations (Bodas-Salcedo et al.,
2011).

We derive the cloud size distribution n(Ai) by adding up
the number of cloudsNi with area between the logarithmically-
spaced bin boundaries Ai+ and Ai− Wood and Field (2011).
We then normalize that count by the total area sampled Atot
and by the bin-spacing to obtain n(Ai) = Ni/[Atot(Ai+ −
Ai−)]. The resulting cloud area distributions are shown in
Figure 1.

Figure 1: The cloud area distribution from Wood and Field
(2011) (solid black curve) and from CAM4 aquaplanet sim-
ulations at four resolutions: T42, T85, T170, and T341.
The solid black Wood-Field curve shows the distribution
that would result if the cloud-length and cloud-area distri-
butions have the same form.

Figure 1 shows that the modeled cloud area distributions
closely follow a power-law distribution over a wide range of
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cloud sizes. The CAM4 simulations produce a substantial
number of clouds with areas that are smaller than the nom-
inal resolution. In Figure 1, these clouds are identifiable by
the segments of the number distributions where these dis-
tributions flatten and break from the power laws distribu-
tions that prevail at larger cloud sizes. These breaks occur
approximately at the scale corresponding to the equatorial
resolution of the model, so we include vertical lines in Fig-
ure 1 to denote the equatorial resolution of each simulation.
These mostly single-cell clouds come from the high-latitude
and polar regions where the meridians converge and the grid
cells are relatively small and have a high aspect ratio. Since
the fractional coverage of these clouds is small, representing
approximately one percent of the total cloud area, we ignore
them for the remainder of this discussion and focus only on
clouds that are at least as large as an equatorial grid cell.

The modeled cloud area distributions closely follow a
power law distribution from the scale of the simulation’s
nominal resolution up to a maximum cloud size that de-
pends on model resolution. All the simulations exhibit a
scale-break at large cloud sizes in a way that is consistent
with the Wood-Field cloud-length distribution. We fit the
function N(A) = cAβ exp[−(A/Abrk)2] to the area distri-
bution from each simulation to determine the power law
slope, β, and the location of the scale-break, Abrk. The
power law slopes from the individual simulations vary sys-
tematically with resolution and range from −1.33 at T42 to
−1.68 at T341. Table 2 presents estimates of the N(A) pa-
rameters, with estimated errors, obtained by a least-squares
fit (in log-log space) of N(A) to the model output. Of all
the simulations, only the T341 simulation has a value of
β that falls within the range of observed slopes between
−1.66 and −1.80 (Wood and Field, 2011). Wood and Field
(2011) use a synthetic cloud dataset to show that the ra-
tio of domain size to pixel size strongly reduces the mag-
nitude of the measured power law slope when the ratio is
less than approximately 1000:1. While their result applies
to the effect of an instrument’s spatial resolution, it is pos-
sible that this effect may also apply to the resolution of
a model simulation. In the CAM4 simulations, these ratios
are roughly 128:1, 256:1, 512:1, and 1024:1 for the T42, T85,
T170, and T341 resolutions respectively. If this domain-to-
cell-size rule holds for atmospheric models, then it would
make sense that the T341 simulation is the only one with
a power law slope that is within the range of the observed
slopes.

The CAM4 cloud area distributions all exhibit a scale-
break, though the location of this break also depends on
model resolution. The breaks range from 9·106 km2 at
T42 resolution to 2.6·106 km2 at T341 resolution (see Table
2). The systematic decrease in this scale-break reflects a
monotonic downward trend in the number of massive cloud
systems as resolution decreases in CAM. This is consistent
with previous aquaplanet results using CAM that show that

c β Abrk [km2]
T42 (0.3 ± 0.2)·10−5 -1.33 ± 0.05 (9 ± 1)·106

T85 (3.9 ± 0.5)·10−5 -1.53 ± 0.01 (4.5 ± 0.2)·106

T170 (11 ± 2)·10−5 -1.61 ± 0.01 (3.1 ± 0.4)·106

T341 (18 ± 3)·10−5 -1.68 ± 0.02 (2.6 ± 0.6)·106

Table 2: Best-fit estimate of the parameters in N(A) =

cAβe−(A/Abrk)
2

to the modeled cloud-area distributions
from Figure 1.

global cloud fraction decreases systematically with increas-
ing resolution (Williamson, 2008). By itself, Williamson’s
(2008) result indicates scale-incognizant behavior, since global
cloud fraction should be constant with resolution if the sub-
grid cloud parameterizations are operating in a scale-aware
way. Further, intuition suggests that as model resolution
increases, the fraction of clouds that are resolvable should
also increase. This can be expressed mathematically us-
ing the framework given in Wood and Field (2011). Wood
and Field (2011) show that the mean cloud fractional cov-
erage of clouds larger than area A, denoted by fc(A), is
given by the first moment of the cloud size distribution, i.e.

fc(A) =
∫ A⊕
A

A′n(A′) dA′, where the area of Earth A⊕ is
used as the upper limit of integration. They also define the
cumulative contribution of clouds, C(A), as fc(A) divided
by the total cloud fraction. C(A) represents the relative
fractional coverage of clouds greater than area A. If we re-
place the upper limit of integration A⊕ with∞, which is an
excellent approximation since the number distribution drops
off rapidly for clouds larger than the scale-break Abrk, then
C(A) can be expressed as a ratio of two incomplete gamma
functions:

C(A) =

∫ ∞
A

An(A) dA/

∫ ∞
0

An(A) dA

=

Γ

(
β+2
2 ,
(

A
Abrk

)2)
Γ
(
β+2
2 , 0

)
Figure 2 shows the relative fractional coverage of re-

solved clouds (Equation 1) as a function of horizontal scale
(grid cell area) along with the estimated uncertainty de-
rived from uncertainties in β and Abrk as described below.
The black curve in Figure 2 is essentially the same curve
as in Wood and Field (2011) (their Figure 6) except that
we use β = −1.73, which is the mean of the −1.66 and
−1.80 values from Wood and Field (2011). To examine the
implications of uncertainty in the power law slope and lo-
cation (or existence) of the scale-break discussed above, we
also show a 1-σ estimate of the uncertainty in the relative
coverage. We estimate this uncertainty by generating an en-
semble of C(A) curves using β and Abrk values within one
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standard deviation of their mean. The spread in Figure 2
shows the minimum and maximum C(A) values within this
set. For the parameter uncertainty, we use σβ = 0.07 and
σAbrk

= 2 · 106 km2. The uncertainty in β is estimated
as half the difference between the slopes of the cloud chord
distribution and the cloud area distribution presented in
Wood and Field (2011), and the uncertainty in Abrk is esti-
mated from the spread in scale-break parameters presented
in Figure 3 of Wood and Field (2011)2.

We interpret C(A) as the fraction of total cloud cover
that should be fully resolvable by a model with a nominal
cell area of A. As expected, the relative contribution of
resolvable clouds increases as theoretical model resolution
increases in Figure 2. In other words, as model resolution
increases, the partitioning of clouds should shift from the
unresolved component to the resolved component. However,
as noted above, CAM4 does not obey this behavior since as
model resolution increases in CAM4, both the global cloud
fraction and the relative contribution of resolved clouds sys-
tematically decrease. As noted in Wood and Field (2011),
and as shown in Figure 2, even at the modest T85 resolu-
tion nearly 80% of global cloud cover should be associated
with fully-resolved clouds. Instead only about 20% comes
from resolved clouds. At T341 resolution, over 90% should
come from resolved clouds, yet only about 10% actually
does. Despite the excellent agreement on the slope of n(A)
between CAM4 and the Wood and Field (2011) data, this
major difference in fc(A) occurs because CAM4 effectively
has a smaller normalization coefficient on n(A). The reason
is that CAM4 has far fewer clouds than in observations even
though the relative distribution of cloud sizes is in excellent
agreement with observations.

Since cloud fraction in CAM4 is a diagnostic quantity
that may exhibit its own resolution-dependent behavior, we
have also performed this analysis using relative humidity
itself to define ‘cloudy’ regions, and the analysis produces
similar results (not shown). Specifically, the relative hori-
zontal area of grid columns containing at least one grid cell
with relative humidity above a given threshold (e.g., 99%)
decreases systematically as resolution increases, similar to
Figure 2. This occurs even though the size distribution of
such areas follows a power law similar to Figure 1. This
indicates that the scale-incognizant behavior shown in Fig-
ure 2 is not an artifact of how CAM4 defines cloud fraction,
but rather it indicates that the model loses regions with
high relative humidity as resolution increases.

Figure 2 points to two issues in CAM4. First, there are
too few resolved clouds, and therefore global cloud frac-
tion is improperly dominated by clouds that are implic-
itly smaller than a grid cell, i.e., cells with cloud fraction
less than ∼100%. Second, the resolved fraction of clouds
appears to converge to 0% as model resolution increases

2Specifically: σ2
Abrk

= (2LbrkσLbrk
)2 = ( 2 · 2100km · 500km)2

when instead it should converge to 100%. To show that
the convergence toward zero is not an artifact of our anal-
ysis method, we replicate this analysis on a synthetic set of
runs. We use data from the T341 simulation as the reference
case, and we use nearest-neighbor interpolation3 to obtain
the corresponding T170, T85, and T42 versions of the same
field; we use nearest-neighbor interpolation because it is the
simplest interpolation method that preserves maxima and
minima in the field, whereas conservative or bilinear interpo-
lation methods would not (e.g., Accadia et al. (2003)). The
resolved cloud fraction from the T341 simulation serves as
an estimate of the total cloud fraction. Figure 2b shows the
cumulative cloud distribution from this synthetic analysis.
The curves essentially overlap, and as resolution increases,
fractionally more clouds are resolved in a way that is consis-
tent with our cloud number distribution analysis. Figure 2b
explicitly demonstrates how a properly scale-aware model
should behave.

3.2 Scaling of Precipitation Intensity

Following the method of Wilcox and Ramanathan (2001),
we calculate the average precipitation rate over individual
clouds and average the precipitation rate within a given
cloud-size bin to obtain the average precipitation intensity
as a function of cloud size. We show the dependence of
precipitation rate as a function of cloud size for the four
CAM4 aquaplanet experiments in Figure 3. We include the
Wilcox and Ramanathan (2001) data (digitized from their
Figure 5a) in Figure 3 for reference.

Figure 3: The cloud-area dependence of precipitation in-
tensity from Wilcox and Ramanathan (2001) (solid black
curve) and from CAM4 aquaplanet simulations at four res-
olutions: T42, T85, T170, and T341. The dashed grey lines
show a power-law slope of 0.6, which is the best fit to the
Wilcox and Ramanathan (2001) data.

In both the TRMM observations (Wilcox and Ramanathan,

3i.e., interpolation where the interpolation weights are 1 for the
nearest point in the reference field and 0 for all other points. This
effectively reduces to subsampling the T341 field every 2, 4, and 8
points for the T170, T85, and T42 grids respectively.
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Figure 2: The relative fractional coverage of clouds that are larger than a given area as a function of that area, i.e., the
percent of total cloud amount comprised of resolvable clouds. The black curve shows the contribution curve derived from a
Wood-Field cloud area distribution (n(A) ∼ Aβ exp[−(A/Abrk)2]). The grey swath shows the estimated uncertainty in the
Wood-Field contribution curve given uncertainty in β and Abrk. The dashed grey lines show the resolution-dependence of
the contribution of resolvable cloud fraction as derived from CAM4 aquaplanet simulations. (a) The resolution-dependence
from actual simulations, and (b) the resolution-dependence from a synthetic set of simulation derived by interpolating
the T341 simulation to the other resolutions. The curves in (b) are normalized by the same constant such that the T341
curve begins on the black line.

2001) and the CAM4 simulations, precipitation intensity in-
creases as a nearly monotonic function of cloud size. While
the relationship is not as clean as the cloud size distribu-
tion, it appears that precipitation intensity roughly follows a
power law relationship with cloud size. A least-squares fit to
the Wilcox and Ramanathan (2001) data yields a power law
slope of c = 0.59± 0.04, which we also show in Figure 3. It
is notable that both the observations and the model output
deviate substantially from the power law for large clouds.
The precipitation rate ceases its steady increase when cloud
sizes exceed a certain scale, though the scale at which the
deviation occurs depends on model resolution. At present,
we do not have an explanation for this leveling-off behav-
ior, though we present evidence in Section 55.1 that it is a
numerical artifact of the model dynamics.

4 Resolution-Dependence of the Resolved Fraction
of Precipitation

Given a cloud size distribution and a precipitation rate
that varies as a function of cloud size, the mean precipitation
rate coming from clouds with areas between A1 and A2 can

be defined as P̄ =
A2∫
A1

AP (A)n(A) dA. While Wood and

Field (2011) interpret this integral as the mean value of
precipitation over all cloudy regions, the integral actually
gives the precipitation averaged over all regions. This can
be shown simply given that cloud fraction comes from the
integral fc =

∫
An(A) dA. If we assume that all clouds

rain at a constant rate of P (A) = P0, then the integral∫
AP (A)n(A) dA is equivalent to P0 ·

∫
An(A) dA = P0 · fc,

which is the precipitation rate averaged over all areas. If
the integral instead represented the cloudy-region average,
as Wood and Field (2011) argue, then we should expect the
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integral to return P0 as the average. We emphasize this
point here because it is critical in the following discussion.

The quantity of interest is the fraction of precipitation
FR(A) coming from clouds that should be resolvable at
a given model resolution represented by the area A of a
model grid cell. This fraction can be written as the ratio
of precipitation occurring in clouds larger than the grid-
cell scale P̄ (A > Ares) to the total precipitation denoted
by P̄ (A < ∞). Following the discussion in Section 3, the
cloud size distribution n(A) and precipitation distribution
P (A) can be approximated by n(A) = aAβ exp−( A

Abrk
)2

and P (A) = bAc respectively, where Abrk is the area at
which the scale-break in the cloud size distribution occurs.
This ratio of integrals can be expressed as a ratio of incom-
plete gamma functions, which can be approximated by a
Taylor expansion to yield a function that is a product of a
power law and gaussian function of A:

FR(A) =
P̄ (A′ > A)

P̄ (A′ < A∞)

=

∞∫
A

A
′ · (bA′c) · (a ·A′βe−(A

′
/Abrk)

2

) dA
′

∞∫
0

A′ · (bA′c) · (a ·A′βe−(A′/Abrk)2) dA′

=
Γ
(
β+c+2

2 , ( A
Abrk

)2
)

Γ
(
β+c+2

2 , 0
)

≈ 1− e−(
A

Abrk
)2 ·
(

A

Abrk

)β+c+2

The approximate form of the integral in Equation 1 gives
some insight into how the resolved fraction equation be-
haves. The exponent given by e = β+c+2, is greater than or
equal to 0 since β is almost certainly greater than −2 (Wood
and Field, 2011), and c appears to be positive according to
Wilcox and Ramanathan (2001) and Figure 3. Adopting the
best-fit value of β ≈ −5/3 sets e & 2/3, and we use e ' 0.8.
This implies that the second term of Equation 1 is a mono-
tonically increasing function of A/Abrk (assuming that the
exponential term is approximately 1 for A << Abrk). As
A decreases relative to Abrk, the second term in the equa-
tion approaches zero and so the resolved fraction approaches
1. Figure 1 and the cloud scaling data from Wood and
Field (2011) indicate that Abrk ∼ 106km2, so one would ex-
pect a majority of precipitation to come from clouds that
are larger than a model’s grid scale (A ∼ 104km2) be-

cause FR ∼ 1 − e−10
−4

(10−2)0.8 ∼ 1; Wilcox and Ra-
manathan (2001) come to a similar conclusion using satellite
observations. While this result is sensitive to the scale at
which the cloud distribution breaks, which Wood and Field
(2011) show varies geographically, data from Wilcox and
Ramanathan (2001) indicate that it is about 106km2 for the

tropics. Median cloud size data from Wood and Field (2011)

implies that it is instead about (500km)
2 ∼ 2.5 · 105km2 in

the tropics and approximately 10 6 km2 for the midlatitudes.
Since most precipitation falls in these regimes (the tropics
and the mid-latitudes), and the fraction of resolved precipi-
tation at 100 km resolution should range from about 0.9 to 1
based on these scale-break values, nearly all global precipi-
tation should come from clouds systems that are larger than
a typical grid box. As Wilcox and Ramanathan (2001) aptly
point out, this does not imply that a model should be able to
resolve the physical processes that lead to precipitation, e.g.
individual convective elements. It does imply, however, that
most precipitation should come from grid columns where the
cloud-area-fraction is 100%.

Figure 4 shows Equation 1, and the grey swath in Fig-
ure 4 shows the 1-σ uncertainty in this curve due to un-
certainties in β, c, and Abrk. Following Section 3.3.1, this
uncertainty is estimated by calculating FR(A) for combina-
tions of c and Abrk within ±1-σ of their mean values. We
estimate the precipitation scaling parameter to be 0.59 ±
0.04 from a least squares fit to the Wilcox and Ramanathan
(2001) data in Figure 3, however we use c = 0.4 and
σc = 0.2 to evaluate FR over a wider range of scaling pa-
rameters.

To demonstrate that the results discussed above do not
result from approximating P (A) as a power law, we include
a digitized version the cumulative precipitation contribution
presented in Figure 6b of Wilcox and Ramanathan (2001)
(note that we in fact show one minus that curve). This
curve falls within the error estimate of the integrated curve
over most of its range. Therefore, we conclude that FR is
not particularly sensitive to the precise shape of P (A).

As indicated by the analysis of the analytic approxima-
tion of the resolved fraction, and by Figure 4, FR is close
to 100% at the 100 km (104 km2) scale of a typical global
model. The lower range of the error estimate is greater
than FR = 95% at this scale. To re-emphasize the impor-
tant point from above, this implies that nearly all precipi-
tation in climate models should come from columns where
the vertically-integrated cloud fraction is 100%.

The resolved fraction of precipitation in CAM4, shown
by the end-points of the colored curves in Figure 4, is sub-
stantially lower than the resolved fraction implied by obser-
vations. The resolved fraction of precipitation ranges from
about 50–60% in the four CAM4 simulations. Furthermore,
the resolved fraction of precipitation decreases with increas-
ing resolution. While the resolved fraction of precipitation
in CAM4 does not seem to be converging toward 0% as
with the resolved cloud coverage, it certainly is not con-
verging toward 100% as observations (and intuition) imply
it should.

Since the number distribution of clouds in CAM4 changes
as a power law of cloud size (Figure 1), as does the precip-
itation intensity (Figure 3), Equation 1 implies that the
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Figure 4: The resolution-dependence of the resolved frac-
tion of stratiform precipitation coming from clouds that are
larger than a given resolution. The dashed black curve
shows the resolved fraction calculated directly using data
from Wilcox and Ramanathan (2001), the solid black curve
shows the estimated resolved fraction that results from as-
suming that the cloud area and precipitation-area distribu-
tions follow power laws, and the grey shading shows the 1-σ
error in the estimated resolved fraction given errors in the
power law distributions. The dashed grey lines show the
actual resolution-dependence of resolved fraction from a set
of idealized (aquaplanet) CAM4 simulations.

resolved fraction of precipitation in CAM4 should have a
similar shape to the black curve in Figure 4. Indeed, the
curve for each individual simulation in Figure 4 has a shape
that is geometrically similar to the black curve. However,
Equation 1 also implies that the CAM4 curves should ba-
sically overlap, such that as resolution increases, each new
curve exposes more of the resolved-fraction vs horizontal-
scale curve. This is clearly not the case.

5 Scale-Incognizance in Multiple Dycores

To verify that the resolution-dependent behavior pre-
sented in the previous sections is not an artifact of the spec-
ification of the model dynamics, we show that CAM4 ex-

hibits this behavior for multiple dynamical cores (dycores).
Additionally, we show that the Weather Research and Fore-
casting (WRF) model behaves similarly when used with the
CAM4 parameterization suite, indicating that this problem
likely originates in one or more of the CAM4 parameteriza-
tions.

The model simulations presented in this section were
produced as part of a larger project4 aimed at assessing
the merits of various strategies for regional climate model-
ing, including limited area, and variable-resolution or high-
resolution global modeling. We use output from the first
stage of this project, in which these various strategies are
compared in an idealized aquaplanet framework. Section 2
describes the experimental setup of these simulations. Physics
parameters, including timestep, were held constant among
all the simulations. The individual simulations are differ-
entiated by the choice of model, dycore, horizontal resolu-
tion, and regional domain. The simulations include output
from the tropical-channel WRF and CAM climate mod-
els. For the WRF model, only the Eulerian mass coordi-
nate dycore is used, while the CAM simulations are based
upon four different dycores including the Eulerian spectral
transform dycore (Neale et al., 2010), the spectral element
dycore (HOMME) (Dennis et al., 2012a), the finite vol-
ume (FV) dycore (Lin, 2004), and the Model for Predic-
tion Across Scales atmospheric (MPAS-A) dycore (Rauscher
et al., 2012). The WRF model has been modified to use the
parameterizations of the CAM4 physics package, so that the
dynamical core is the main difference between the CAM4
and WRF simulations presented here. The WRF simula-
tions have been performed at two resolutions on a tropical
band, with boundary conditions supplied by the T85 Eule-
rian dycore simulation: 25 km and 100 km. The global CAM
simulations are performed using the Eulerian dycore at T85
and T341 resolutions, the FV dycore at 2-degree (220 km)
and 0.5-degree (55 km) resolutions, the HOMME dycore
at 220 km, 110 km, 55 km, and 28 km resolutions, and the
MPAS-A dycore at 240 km, 120 km, 60 km, and 30 km
resolutions. The MPAS-A dycore has also been used to
produce a variable-mesh simulation with a 30 km resolution
region centered in the tropics and 240 km resolution else-
where. These various configurations of dycores and resolu-
tions yield 15 different model simulations, which are listed
in Figure 5.

The cloud-area algorithm in Section 33.1 utilizes the
model-calculated total column cloud fraction in order to
detect resolved clouds. Unfortunately, this total cloud vari-
able was not among those saved in the instantaneous out-
put archive from the ‘Robust Regional Climate Modeling’
CAM4 simulations, and the substantial computational cost
of these simulations has prohibited re-running the simula-
tions to archive this variable. Fortunately, a significant por-

4The Department of Energy Project ‘Development of Frameworks
for Robust Regional Climate Modeling’
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Figure 5: The legend for several figures in this manuscript;
because of the size of this legend and the number of items,
it is only presented once to conserve space.

tion of the cloud field in CAM4 is diagnosed solely from
the relative humidity, which can be derived from the three-
dimensional fields for temperature, pressure, and specific
humidity included in the instantaneous output archive. We
have directly implemented the necessary CAM4 parameter-
izations into our cloud-area code, including the procedures
for calculating relative humidity, the dependence of strati-
form cloud fraction on relative humidity, and the treatments
of cloud geometrical overlap for the total-column cloud frac-
tion. To be consistent with this definition of cloud, we also
only use stratiform precipitation, whereas we had used to-
tal precipitation and total cloud fraction in Sections 33.1
and 33.2. As in Section 33.1, we define resolved clouds as
any set of one or more contiguous cells with total strat-
iform cloud fraction greater than 99%. We performed the
cloud-area analysis on the full last year of each 5-year model
simulation. The T85 and T341 Eulerian dycore simulations
described in Section 2 are identical to the T85 and T341
simulations described here, except that simulations in Sec-
tion 2 were run for a shorter duration and saved a larger
number of output variables (including, notably, total cloud
fraction).

5.1 Precipitation Scaling

Figure 6a shows the cloud-size dependence of stratiform
precipitation from all 15 simulations similar to the corre-
sponding dependence of total precipitation depicted in Fig-
ure 3. In the Wilcox and Ramanathan (2001) data depicted
in Figure 3, the precipitation intensity increases with in-
creasing cloud size with a mean power-law slope of approxi-
mately 0.6 for clouds smaller than approximately 5· 104 km2

and is essentially invariant for clouds larger than this limit.
Similar features are evident in the stratiform precipitation
shown in Figure 6. With the exception of the MPAS-A dy-

core, precipitation in most of the dycores increases with a
power law slope close to 0.6 for relatively small clouds, and
all of the dycores exhibit some degree of slope-flattening for
larger clouds. However, both the contrast between the high-
and low-slope regions and the scale-break point, at which
this flattening occurs differ appreciably across the various
dycore and resolution combinations. The MPAS-A simu-
lations exhibit almost no difference in slope between the
high- and low-slope regions, whereas the slope actually re-
verses sign slightly in the low-slope region of the HOMME
simulations.

Figure 6: (a) Stratiform precipitation intensity as a function
of cloud area for multiple dynamical cores and multiple res-
olutions in CAM4. The light grey lines depict a power-law
slope of 0.6, which represents the best fit to the observa-
tions from Wilcox and Ramanathan (2001). (b) Cloud area
distribution for multiple dynamical cores and multiple res-
olutions in CAM4. The light grey lines depict a power-law
slope of −5/3, which represents the observations from Wood
and Field (2011). Curves from a given dynamical core in (b)
are scaled by a common arbitrary constant to provide verti-
cal separation between the groups of curves. Table 5 shows
the legend for both panels.

The scale-break point varies between 104 to 106 km2 for
the various combinations of resolutions and dycores. De-
spite this considerable dycore/resolution dependence, the
different dycores do share a common feature, namely that
the value of the scale-break increases with decreasing reso-
lution. To determine the grid-cell size of clouds correspond-
ing to the scale-breaks for each resolution and dycore, we
perform a non-linear least-squares fit of two distinct scal-
ing laws intersecting at a variable cloud amount where a
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scale-break is introduced by construction. The value of this
cloud amount that maximizes the variance explained by the
two scaling laws gives an objective estimate of the area at
which the scale-break occurs for each combination of reso-
lution and dycore. We find that the scale-breaks are typi-
cally 4±1 times the nominal resolution in terms of grid cell
length. This implies that the curves from Figure 6 should
collapse onto one another when horizontally normalized by
the respective model resolutions. To demonstrate this, Fig-
ure 7 shows the same curves as Figure 6, but with the cloud
size for each curve normalized by the area of an equatorial
grid cell. Taking the square root of this value (cloud area
divided by cell area) gives cloud sizes as measured by the
characteristic grid-cell length of the cloud.

Figure 7: As in Figure 6a, but as a function of nominal
grid-cell length instead of cloud area: i. e. the square root
of cloud size divided by the area of an equatorial grid cell.
The precipitation curves are multiplied by a constant so
that they overlap in the flat portion of the curves. The
vertical, dashed grey line shows the mean location of the
scale-break point, as estimated by a least-squares fit to a
line with two distinct slopes, and the vertical grey swath
depicts the spread of these estimated break points. Table 5
shows the legend for the colored curves.

Figure 7 shows that for all of the dycores, precipitation
rate increases sharply with a dycore-dependent slope from
single-cell clouds up to clouds that are approximately four
grid cells on a side. After this four-cell break, the precipi-
tation rate is essentially independent of cloud size. The ap-
proximate slope (in log-precipitation versus log-cloud area
space) is greater than −0.05 for most of the simulations,
though it is approximately −0.2 for the simulations with
MPAS-A at 240 km and 120 km and the simulations with
HOMME at 220 km and 110 km.

The change in slope that occurs as cloud sizes approach

a length of four grid cells might suggest that the relatively
high slopes for areas smaller than the scale-break are caused
by some numerical property or artifact of the underlying
model dynamics. Since model dynamics, e.g., the numer-
ical treatments of horizontal advection and diffusion, are
consistent within a given dycore group, one might expect
numerical artifacts of the dynamics to also be consistent
within a given dycore group. This expectation is supported
by the fact that the slopes are relatively consistent within
dycore groups. For example, all of the MPAS-A simula-
tions, which use high-order transport discretizations on a
set of spherical centroidal Voronoi tessellations (Skamarock
et al., 2012a), have slopes of relatively low magnitude for
cloud areas smaller than the scale-break point. In contrast,
the finite-volume simulations, which use second-order trans-
port discretizations on a regular grid (Neale et al., 2010),
have much larger slopes for clouds areas below the scale-
break point. We hypothesize that the collective diffusive
properties of the numerical schemes are responsible for this
behavior, and if true this would imply that the slope of the
curve should be sensitive to both explicit horizontal diffu-
sion and implicit horizontal diffusion that results from the
numerical formulation, e.g., use of monotone transport or
upstream biased numerics.

5.2 Size Distribution and Resolved Fraction

Figure 6b shows the cloud size distribution for all 15 sim-
ulations. As in Figure 1, the cloud size distribution closely
follows a −5/3 power law of cloud size over a wide range
of cloud sizes up until a scale-break for clouds larger than
approximately 2 ·106 km2. For all the dycores, the number
of extremely large clouds, i.e., clouds with areas larger than
the scale-break, drops as resolution increases. Interestingly,
all the uniform-resolution simulations from all the dycores
have cloud size distributions that overlap almost perfectly,
such that the higher-resolution simulations merely extend
the power-law distributions to larger cloud areas. The main-
tenance of consistency with the scale-invariance of the cloud
field at lower resolutions as small clouds are added with in-
creasing resolution is precisely the sort of behavior that one
should expect from a scale-aware mode.

Despite this excellent resolution-dependent behavior, all
of the dycores exhibit the scale-incognizant change in the
fraction of resolved clouds that is presented in Figure 2.
Figure 8 shows how the fraction of cloud coverage that
comes from resolved clouds changes as a function of res-
olution and dycore. As noted in Section 53.1, we expect
that as resolution increases, the fraction of resolved clouds
should also increase. Instead, within a given dycore group
in Figure 8, the fraction of resolved clouds systematically
decreases with increasing resolution. Since the curves in
Figure 8 are essentially cumulative integrals of the curves
in Figure 6b, this difference must be due to the system-
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atic loss of extremely large clouds that occurs as resolution
increases. The cloud number distribution drops systemati-
cally with increasing resolution in the rightmost portion of
the curves in Figure 6b, and this is the only place where the
curves within a given dycore group do not overlap. This
loss of large clouds can be viewed as a resolution-dependent
change in the location of the cloud number distribution
scale-break. To demonstrate this objectively, we estimate
Abrk from a least-squares fit of the Wood-Field n(A) to the
cloud size distributions from the uniform mesh CAM4 simu-
lations. Figure 12 shows that Abrk decreases systematically
with increasing resolution for each dycore.

Similarly, while the resolved fraction of stratiform pre-
cipitation (Figure 9) decreases systematically with increas-
ing resolution, we have shown in Section 4 that it should
systematically increase. Though Equation 1 is based on the
analysis from Wilcox and Ramanathan (2001) for total pre-
cipitation, it can also be applied to stratiform precipitation
in CAM4, since Figure 6a shows that stratiform precipita-
tion scales roughly as a power law. Therefore Equation 1
also represents how the resolved fraction of stratiform pre-
cipitation in CAM4 should change with resolution, which is
opposite of how it changes in Figure 9.

Figure 8: (a) Fc(A), The fraction of area covered by clouds
greater than area A for multiple dynamical cores at mul-
tiple resolutions. Note that the vertical scale is reduced
to show details of the model curves. (b) The resolution-
dependence of resolved cloud coverage for each dycore. The
bars show the modeled resolved cloud coverage, and the ad-
jacent curves show the resolution-dependence expected from
Equation 1. See Section 5 for a discussion of the alternate
definition of cloud used for these simulations. Table 5 shows
the legend for the colored curves.

The curves in Figure 9 are effectively cumulative inte-

Figure 9: (a) As in Figure 4, but for multiple dynam-
ical cores at multiple resolutions. (b) The resolution-
dependence of the resolved fraction of precipitation for
each dycore. The bars show the modeled resolved fraction,
and the adjacent curves show the resolution-dependence ex-
pected from Equation 1. Table 5 shows the legend for the
colored curves.

grals of the precipitation distributions from Figure 6a and
the cloud size distribution from Figure 6b. Therefore this
scale-incognizant behavior could come from decreases in ei-
ther the number density of resolved clouds or the precipita-
tion intensity in resolved clouds with increasing resolution.
However, Figure 6a shows that the stratiform precipitation
rate systematically increases with increasing resolution for
all cloud sizes (see also Figure 10b in Section 66.1). For
a fixed cloud size distribution and fixed total precipitation
rate an increase in the intensity of resolved precipitation
should cause an increase in the resolved fraction of precip-
itation. We can therefore rule out the systematic change
in precipitation intensity as being the direct cause of the
scale-incognizant decrease in resolved precipitation with in-
creasing resolution. We must instead conclude that a change
in the number distribution of clouds is the direct cause of
the systematic decrease in the fraction of resolved precip-
itation. As we previously concluded in this section, the
systematic loss of extremely large clouds with increasing
resolution is the cause of the systematic decline in resolved
cloud fraction. We conclude here that this systematic loss
of extremely large clouds is also the direct cause of the sys-
tematic decline in resolved precipitation.
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function of model resolution, for the various dynamical cores used in this study. The legend in (a) applies to both panels.

6 Scale-Incognizance of Multiple Parameterizations

6.1 Scale-Incognizance of Convection

What is the cause of this scale-incognizant behavior?
While we do not have a definitive answer at this point, we
can narrow the possible causes down to a likely few. The
scale-incognizant results in Section 3 alone might lead one
to speculate that some aspect of the model dynamics does
not converge as resolution increases. However, Section 5
definitively shows that all of the dynamical cores exhibit
this behavior. Given the dramatically different methods
for solving the fluid equations that range from a spectral
transform method on a regular grid in the Eulerian dycore to
a finite volume method on Voronoi polygons in the MPAS-
A dycore, it seems highly unlikely that the model dynamics
are the root cause.

Li et al. (2011a) note that the non-convergent increase
in precipitation extremes in CAM3 employing the Eule-
rian dycore appears to be related to an increase in the
strength of vertical velocities. Their results suggest that
model dynamics could drive the scale-incognizant behavior,
but Williamson (2012) argues that the strong vertical ve-
locities at high resolution in CAM4 are driven by latent
heat release from the stratiform condensation parameteri-
zation. Since the latent heat release drives vertical motion
and increases the vertical transport and horizontal conver-
gence of moisture, this results in a positive feedback between

the transport, latent heat release, and resulting buoyancy
that in turn accelerates the vertical motion. Williamson
(2012) shows that the excessive stratiform condensation re-
sults from an effective deactivation of the convective pa-
rameterizations that occurs when the model timestep is
much smaller than the convective timescale. In the specific
case evaluated by Williamson (2012), the model timestep
of 5 minutes is an order of magnitude smaller than the
60-minute timescale for the deep convection. Williamson
(2012) indicates that this effect is not as strong at lower
resolutions and suggests that the coarser grid cannot sup-
port the strong horizontal convergence that results from this
feedback. His results imply that the resolution-sensitivity of
updraft strength and precipitation intensity is caused by the
dampening of this condensation–updraft feedback as reso-
lution decreases.

In the model runs presented here, the 10-minute timestep
for the physics parameterizations is substantially less than
the timescales of convection used in these runs of 30 and 60
minutes, respectively, for the shallow and deep convection.
Following Williamson (2012), we should expect that con-
vective precipitation is effectively deactivated at high res-
olution. Figure 10 shows that the fraction of precipitation
generated by both of the convection schemes is relatively
high and ranges from 40 to 50% for the lower resolution
simulations, and it decreases into the range of 15–30% at
higher resolutions at a rate that appears to be quite depen-
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dent on the choice of dycore. Additionally, we find that
updraft strength systematically increases with increasing
resolution (not shown). This increase in updraft intensity,
together with the relative decrease in convection, is consis-
tent with Williamson’s (2012) hypothesis. His work implies
that a favorable convection-to-timestep ratio (i.e., of order
1 or larger) would allow an active set of convection param-
eterizations that might inhibit this feedback by removing
atmospheric instability before the stratiform parameteriza-
tion removes supersaturation by condensing water.

The resolution-dependence of the precipitation partition-
ing between the convective and stratiform components is
consistent with results from Moncrieff and Klinker (1997)
using the European Centre for Medium-Range Weather Fore-
casts model. They show that stratiform precipitation dom-
inates over convective precipitation in T106 and T213 sim-
ulations of an organized convective cluster. They suggest
that the problem is partly associated with the model under-
resolving the scale at which cumulonimbus clouds organize
(∼20–200 km), which leads the resolved flow to organize
into a super-cluster that drives stratiform precipitation at
the cluster-scale (∼1000 km). They hypothesize that mod-
els with similar stratiform parameterizations (which CAM4
has) and resolution finer than T106 should exhibit simi-
lar behavior. This suggests that the resolution-dependent
repartitioning of precipitation from convective to stratiform
may be a model behavior that is not unique to CAM.

The resolution-dependence of convective precipitation
shown in Figure 10 suggests scale-incognizance in the con-
vection formulation. According to Williamson (2008), a
common explanation for the resolution-dependence of con-
vective precipitation and other measures of convective activ-
ity is that increasing resolution results in an augmentation
of resolved convection and a reduction of parameterized con-
vection. Williamson (2008) argues that this may be a weak
premise. Given that the horizontal scale of convection is
on the order of 10 km (Schumacher and Houze, 2003), con-
vection should be occurring at the sub-grid scale in all of
the simulations presented in this manuscript. Therefore,
increasing resolution should not increase the amount of re-
solved convection in any of these simulations. A properly
scale-aware convection formulation should produce a con-
sistent fraction of the total precipitation, roughly 20% ac-
cording to Schumacher and Houze (2003), for any climate
simulation with a horizontal resolution larger than approx-
imately 10 km.

6.2 Scale-Incognizance of Micro/Macrophysics

We show in Section 55.2 that the reduction in the re-
solved component of stratiform precipitation can be directly
attributed to the loss of large, resolved clouds as resolu-
tion decreases. We hypothesize that either convective or
stratiform processes are directly responsible for the loss of

large clouds that leads to the scale-incognizant behavior.
To test this hypothesis, we have performed a set of ex-
periments in which we replicated the T42 and T85 simu-
lations from Section 2, but with both convection param-
eterizations turned off in one set and sub-grid stratiform
precipitation turned off in the other (specifically, autocon-
version and sedimentation are restricted to originate from
grid cells with at least 99% cloud fraction). We refer to
the simulations as Convection-off and Subgrid-off respec-
tively. To test whether the stratiform formulation itself
causes the behavior, we have also run the T42 and T85 aqua-
planet simulations with CAM5, which utilizes the Morrison-
Gettelman microphysics and the Park macrophysics formu-
lations instead of the Rasch-Kristjánsson and Zhang for-
mulations of CAM4 (Neale et al., 2010, 2012). We refer
to the combined micro- and macrophysics packages from
CAM4 and CAM5 as the Rasch-Kristjánsson-Zhang (RKZ)
and Morrison-Gettelman-Park (MGP) micro/macrophysics
packages respectively. We perform the CAM5 simulations
with a zonally and hemispherically symmetric prescribed
aerosol dataset (including dust, sulfate, etc.), which is re-
quired by the CAM5 microphysics package.

Figure 11 shows the resolved cloud fraction and the re-
solved stratiform precipitation fraction from these experi-
ments and from a control set of experiments (navy blue,
dashed curves). Table 3 summarizes the results from these
sensitivity tests. The Convection-off (yellow, dashed curves)
and Subgrid-off (red, dashed curves) experiments show that
neither of the convective parameterizations, which are both
deactivated in Convection-off, nor sub-grid stratiform pre-
cipitation are solely responsible for the scale-incognizant
behavior in CAM4. As in Figures 2, 4, 8, and 9, the re-
solved cloud fraction and the resolved stratiform precipi-
tation fraction both decrease with increasing resolution in
the Convection-off and Subgrid-off experiments. As in Sec-
tions 33.2 and 55.1, this scale-incognizant behavior in both
experiments is caused by a loss of large clouds (not shown).
The only component common to these three experiments
is the RKZ micro/macrophysics package that controls the
rates of condensation, evaporation, and precipitation for-
mation in stratiform clouds. This strongly suggests that
the RKZ package is the root cause of the scale-incognizant
change in clouds and stratiform precipitation. If this is
true, then a model configuration with a different set of
micro/macrophysics parameterizations should have differ-
ent resolution-dependent behavior. Figure 11 shows that
CAM5, with the MGP micro/macrophysics package (green,
dash-dotted curves), indeed exhibits scale-dependent behav-
ior that is different from CAM4. Specifically, the resolved
fraction of stratiform precipitation increases with increas-
ing resolution in a scale-aware way, and the resolved cloud
fraction increases from T85 to T170 resolution, though it
decreases from T42 to T85.

It is difficult to conclude from Figure 11 and Table 3
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a function of model resolution from multiple sensitivity tests, and (c) the legend for curves in panels (a) and (b) The
experiments using the CAM5 MGP micro/macrophysics parameterization are indicated by curves overlain with solid
circles.

whether the CAM5 physics package yields a completely scale-
aware model. The cumulative precipitation distributions
overlap quite well among the three resolutions, and the cu-
mulative resolved cloud fraction distributions overlap al-
most perfectly for the T85 and T170 simulations. How-
ever, the T42 distribution is systematically higher due to
a higher proportion of massive clouds. Interestingly, the
cloud number distributions for all the resolutions from the
CAM5 APE simulations (not shown) have a power-law slope
of approximately −5/3 for all cloud sizes. This is in con-
trast to the observations of Wood and Field (2011) and the
CAM4 simulations, which exhibit a break in the distribution
for clouds with a chord length longer than about 2000 km.
That CAM5 has a systematically higher global and resolved
cloud fractions of approximately 80% and 40%, respectively,
relative to CAM4 may be due to the existence in CAM5 of
semi-planetary-scale cloud systems that cover at least 10%
of Earth’s area.

To ensure that the more scale-aware features of the CAM5
simulations are due to the MGP micro/macrophysics pack-
age, and not the different boundary layer and shallow con-
vection parameterizations, we have also run T42 and T85
CAM5 simulations with the CAM4 versions of these pa-
rameterizations (blue, dash-dotted curves). In these ‘CAM5
UW-off’ experiments, the new UW parameterization is re-
placed with the Holtslag-Boville parameterization for the

boundary layer and the Hack parameterization for shallow
convection. Figure 11 and Table 3 shows that the results
are similar to the basic CAM5 simulation. Specifically, the
resolved stratiform fraction curves change in a scale-aware
way, the resolved cloud fraction drops between the T42
and T85 simulations, and semi-planetary-scale clouds ex-
ist. Further, a test with the FV dycore (cyan, dash-dotted
curves) shows a change in resolved cloud fraction between
the 2-degree and 1-degree simulations, indicating that this
resolution-dependence is not solely due to an interaction be-
tween the Eulerian dycore and the CAM5 physics. These
tests show that the MGP micro/macrophysics pacakge is re-
sponsible for changing the resolution-dependence of clouds
and precipitation in the CAM5 simulations, which is further
evidence that the RKZ micro/macrophysics package is the
origin of the scale-incognizant changes in clouds and strati-
form precipitation in CAM4. Because the microphysics and
macrophysics parameterizations are closely coupled in both
CAM4 and CAM5, it is difficult to devise a simple exper-
iment that isolates one from the other to further narrow
down whether the microphysics, macrophysics, or both pa-
rameterizations drive the scale-incognizant behavior.
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Experiment ∆Fc/∆Res. ∆FR/∆Res.
CAM4 Control + +

CAM4 Subgrid-off + +
CAM4 Convection-off + +

CAM5 Eulerian + & - -
CAM5 FV + & - -

CAM5 UW-off + & - -

Table 3: A table summarizing the main results from the
sensitivity tests shown in Figure 11. The ∆Fc/∆Res. and
∆FR/∆Res. columns show the sign of the slope of the re-
solved fraction of cloud cover and precipitation respectively.
The cells with ‘+&-’ indicate ambiguous results. We define
the ∆ operator as the high resolution quantity minus the
low resolution quantity. For both Fc and FR, these slopes
should be negative for a scale-aware model.

7 Discussion

Constraints on the various components of precipitation
offer a framework in which to understand proper scale-aware
behavior. Total precipitation is dynamically constrained to
be insensitive to resolution, since global radiative-convective
equilibrium requires this to be approximately 3 mm·day−1

to balance the radiative flux divergence across the tropo-
sphere. As argued above, convective precipitation should
always be a sub-grid scale phenomenon in climate models
with resolutions greater than about 10 km, and so convec-
tive precipitation should be insensitive to resolution in such
models. If we view total precipitation as the sum of convec-
tive and stratiform components (i.e., PT = PC + PS), then
this implies that total stratiform precipitation should also be
insensitive to resolution, though the partitioning between its
unresolved and resolved components should change with res-
olution. We show in Section 4 that this partitioning should
change as FR ∼ 1 − xα, where x is the grid area and
α is a scaling parameter related to the scaling parameters
from the cloud number distribution and from the cloud-size
dependence of precipitation intensity. Furthermore, Fig-
ure 4 shows that at least 90% of the stratiform precipi-
tation should occur in cloud systems larger than 250 km,
and therefore the unresolved component of stratiform pre-
cipitation should be small and only weakly dependent on
resolution in modern climate models with resolutions finer
than 250 km.

In a model with a scale-aware set of precipitation pa-
rameterizations, global averages of the precipitation compo-
nents should behave in the following way: convective precip-
itation should be constant with resolution, total stratiform
precipitation should be constant with resolution, and the
portion of precipitation coming from partially-cloudy grid
columns should be small and should decrease as resolution
increases. In contrast to this behavior, convective precipita-

tion in CAM4 decreases by 15–30% as resolution increases
(Figure 10a), stratiform precipitation increases by 15–30%
(Figures 3 and 10b), the portion of precipitation coming
from partially-cloudy grid columns is large (30–70%), and
this unresolved component increases by approximately 20%
as resolution increases (Figure 4). In other words, as res-
olution increases in CAM4, precipitation increasingly be-
comes inappropriately dominated by sub-grid scale strati-
form “storms”. We show evidence in Section 6 that the con-
vective parameterization likely causes the scale-incognizant
repartitioning of precipitation between the stratiform and
convective components, and the micro/macrophysics pack-
age causes the scale-incognizant reduction in resolved cloud
coverage and resolved precipitation. The MGP micro/macro-
physics parameterizations in the CAM5 physics package ap-
pears to improve the scale-incognizant cloud and stratiform-
precipitation behavior, but the scale-incognizant resolution-
dependence of the relative contribution of convection re-
mains.

The scale-incognizant behavior of the RKZ package likely
explains results from a number of recent studies showing
strong decreases in total cloud coverage and intensification
of stratiform precipitation in CAM4 as resolution increases
(Williamson, 2008; Levy et al., In Review; Rauscher et al.,
2012). We do not yet have an explanation for why the RKZ
package seems to drive such strong resolution-dependent
behavior, but a future study that explains this behavior
would be invaluable. An understanding of the causes of
scale-incognizance could help ensure that future model de-
velopment efforts produce scale-aware model components.

As we note in Section 5.5.2, the scale-incognizant de-
crease of resolved, stratiform precipitation can be attributed
to a loss of large clouds as resolution increases, and this loss
of large clouds is equivalent to the scale-break in the cloud
size distribution shifting toward smaller scales. Therefore,
understanding why the scale-break in the cloud-size distri-
bution shifts toward smaller clouds as resolution increases
is key to understanding the scale-incognizant behavior of
precipitation in CAM4. Wood and Field (2011) hypoth-
esize that the Rossby radius of deformation may set the
size at which this scale-break occurs. If this is true, then
it is plausible that resolution-dependence of the Rossby ra-
dius of deformation may explain the resolution-dependence
of the scale-break. In Figure 12, the size of each point
is proportional to the mean Rossby radius of deformation
for that simulation. We approximate the Rossby radius as

R = |f |−1 ·
26∑
k=15

Nk · ∆zk, where f is the Coriolis parame-

ter, k is the model level (ranging from approximately 250
hPa to 1000 hPa, which we chose to roughly span the tro-
posphere), Nk is the Brunt-Väisälä frequency, and ∆zk is
the layer thickness (Chelton et al., 1998). We calculate the
mean Rossby radius as the mean in time and space (for
latitudes greater than 5o) weighted by the Coriolis parame-
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ter to avoid biasing the estimate toward Equatorial values.
Figure 12 indicates that the Rossby radius does not vary
systematically with resolution, while the scale-break tends
to decrease with increasing resolution. If the Rossby radius
sets the scale at which the cloud size distribution breaks
from a power law, then we should expect that the Rossby
radius would also decrease with increasing resolution. That
it does not indicates that the Rossby radius of deformation
does not set the scale-break in these CAM4 simulations.
While this provides evidence that the Rossby radius is not
the sole quantity that determines the scale-break, it does not
indicate whether the Rossby radius has any influence on the
scale-break. Additional model experiments (e.g., sensitivity
studies with the Coriolis parameter) will be necessary to
investigate such a connection. Further work will be neces-
sary to understand the scale-incognizant loss of large clouds,
and the resulting loss of resolved precipitation, as resolution
increases in CAM4 simulations.

Figure 12: The scale at which the cloud number distribu-
tions from the CAM4 simulations depart from a power law
as a function of model resolution. The color of the points in-
dicates the dynamical core (blue⇒ Eulerian, orange⇒ FV,
green ⇒ MPAS-A, red ⇒ HOMME), and the size of each
point is proportional to the mean Rossby radius of defor-
mation for that simulation.

In the two manuscripts describing variable-mesh capa-
bilities in CAM, only CAM4 physics has been used (Levy
et al., In Review; Rauscher et al., 2012). Currently, the
MPAS dycore only works with CAM4 physics, although a
new, non-hydrostatic version with CAM5 physics is cur-
rently in development (Skamarock et al., 2012b), and the
SE dycore has not been extensively tested with the CAM5
physics. The apparent improvements in the scale-aware be-
havior of the CAM5 physics package, combined with the

fact that it is now the core atmospheric model for the Com-
munity Earth System Model package, make it the logical
alternative to CAM4 for variable-mesh modeling. However,
CAM5 still requires some additional work to become a fully
scale-aware model.

Our brief tests with CAM5 in aquaplanet mode indicate
the following deficiencies with respect to scale-awareness:
(1) there is a distinct jump in the resolved cloud fraction
from T42 to T85 resolution (and from 2-degree to 1-degree
with the FV dycore); (2) the fraction of precipitation com-
ing from convection changes strongly with resolution as in
CAM4; and (3) CAM5 does not exhibit the scale-break in
the cloud number distribution that is present in CAM4 and
that has been observed by Wood and Field (2011) (i.e.,
there are a significant number of planetary-scale cloud sys-
tems). Issue (1) indicates that there is some form of implicit
resolution-dependence in the MGP micro/macrophysics pa-
rameterization. It is possible that a detailed investigation
into the factors causing the implicit resolution-dependence
of the RKZ micro/macrophysics package may reveal similar
factors in the MGP micro/macrophysics parameterization.
Issue (2) is not surprising, since both CAM4 and CAM5
utilize the Zhang et al. (2003) deep convection parameter-
ization. Efforts like those described by Park (2012) may
improve the scale-aware behavior of the convection parame-
terization. It is not immediately clear what causes issue (3),
though it is possible that this is an artifact of using our
cloud-clustering algorithm on a field in which a majority of
the cells have resolved clouds. Since the cloud field is ef-
fectively more crowded, more clouds may combine to make
mega-clusters. An alternative algorithm that discriminates
clouds based on physical properties (e.g., cloud top temper-
ature or vertical connectedness) may not behave in such a
way. This could be tested either by using this algorithm on
a synthetic cloud field with high cloud fraction, or by tuning
CAM5 to have a lower cloud fraction. If it can be shown
that issue (3) is not an artifact of the clustering algorithm,
then a detailed comparison between the two CAM micro-
physics parameterizations may yield insight into why the
MGP package produces a cloud field with planetary-scale
clouds and the RKZ package does not.

This study has two important limitations: it treats the
entire atmosphere as a single layer, and it does not consider
the impact of vertical resolution. Pressel and Collins (2012)
show that the scaling of water vapor differs distinctly be-
tween the boundary-layer and the free-troposphere. This
suggests that an analysis of cloud scaling at different levels
of the atmosphere may yield cloud size distributions with
different slopes at different levels, which would affect the
shape of the resolved cloud fraction (C(A)) and resolved pre-
cipitation fraction (FR(A)) curves. If the power-law slope of
the cloud size distribution depends on height in the atmo-
sphere, then changing vertical resolution might change the
power-law slope calculated by treating the atmosphere as a
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single layer as we do in this analysis. Adding vertical layers
to a specific section of the atmosphere might cause more
clouds to be resolved in that section, which would weight
the ‘net-tropospheric’ cloud size distribution toward that of
the tropospheric section with additional layers. Analysis of
vertically-resolved cloud observations, such as those from
CloudSat (Stephens et al., 2008), could provide a height-
resolved constraint on cloud scaling.

We argue that in the paradigm of variable-mesh models,
a primary goal of model development should be to ensure
that fields that are known to have scale-invariant statistics
maintain that scale-invariance across resolution transition
zones. This is not the case in variable-resolution simula-
tions using CAM4 physics (Levy et al., In Review; Rauscher
et al., 2012). Further, a primary goal of model tuning in
this paradigm should be to ensure that the integrals of such
scale-invariant quantities match with observations. In the
case of clouds, this means that model development efforts
should aim to produce a cloud number distribution that
maintains a −5/3 power-law slope across the mesh transi-
tion regions, and model tuning efforts should aim to produce
a cloud field in which resolved clouds cover approximately
two-thirds of the area of the globe. If modeled cloud sys-
tems can be made to exhibit the scaling of optical properties
observed in real clouds (Wood and Field, 2011), then per-
haps global radiative balance will naturally follow as long as
the cloud field is properly tuned. Conversely, variable mesh
models that obey proper cloud size scaling behavior, but
not cloud optical scaling behavior, might have high resolu-
tion regions with a radiative imbalance. Such regions would
require anomalous horizontal convergence or divergence of
energy to achieve energetic equilibrium.

8 Conclusions

This systematic study of the Community Atmosphere
Model physics package in an aquaplanet framework has iden-
tified several distinctly scale-incognizant behaviors of CAM4.
As resolution increases in CAM4 simulations, the model out-
put changes in the following scale-incognizant ways: the pre-
cipitation budget becomes increasingly dominated by strat-
iform precipitation, more stratiform precipitation falls from
unresolved clouds, the model resolves fewer large cloud sys-
tems, and the partitioning between resolved and unresolved
clouds shifts toward unresolved clouds. Sensitivity tests im-
plicate the deep convection parameterization as the source
of the scale-incognizant increase in total stratiform precipi-
tation and the microphysics parameterization as the source
of the scale-incognizant changes in resolved cloud cover-
age and resolved stratiform precipitation. Tests with the
CAM5 physics package show some improvements in scale-
awareness, though we note some aspects that require further
development: particularly the resolution-dependent repar-
titioning of convective and stratiform precipitation, which

apparently originates in the deep convection parameteriza-
tion.

Though this study demonstrates that the CAM4 micro-
physics parameterization and the CAM4/5 deep convection
parameterization both lead to scale-incognizant behaviors,
we do not have a good explanation for this behavior. A
future study that investigates the physical reasons for these
scale-incognizant behaviors may provide valuable informa-
tion for the emerging field of scale-aware parameterization
development. At very least, such a study would outline pos-
sible pitfalls in the design of scale-aware parameterizations.

The results from this study also show some interesting,
but unexplained phenomena in CAM. In Section 5, we show
that the cloud-area dependence of precipitation flattens for
cloud clusters that are larger than about four grid cells on a
side. This flattening, which occurs to some degree in all dy-
cores at a grid-dependent scale, rather than a physical scale,
suggests that the feature is numerical in origin. We specu-
late that it is somehow related to horizontal diffusion, but
a detailed analysis of this phenomena may yield some in-
sight into the numerical nature of CAM. Further, we show
in Sections 33.1 and 5 that the CAM4 has a cloud num-
ber distribution with a scale-break, and that the location
of this scale-break depends on the resolution. We demon-
strate in Section 5 that the scale-incognizant behavior of re-
solved clouds and stratiform precipitation is directly related
to the loss of extremely large clouds, which is expressed as
a resolution-dependence of the location of this scale-break.
Therefore, an investigation into the origin of the resolution-
dependence of this scale-break should yield insight into why
the CAM4 microphysics parameterization ultimately drives
this scale-dependence. Additionally, such an investigation
may provide some insight into what might control the lo-
cation of this scale-break in the real world. Interestingly,
CAM5 does not appear to exhibit this scale-break, though
it is not clear whether this is due to an artifact of the cloud
clustering algorithm, or whether it is an intrinsic quirk of
the CAM5 microphysics parameterization; this issue should
also be explored in a future study.

Scale-invariant and scale-dependent quantities are a nat-
ural touchstone for the development of variable-mesh mod-
els and particularly of scale-aware parameterizations within
these models. In this study, we use the scale-invariance of
the cloud number distribution to describe how cloud cover-
age should change with resolution. We combine this with
the scale-dependence of precipitation to show how resolved
precipitation should change with resolution. Numerous stud-
ies demonstrate the scale-invariance of various other at-
mospheric quantities, including momentum (Nastrom and
Gage, 1985), temperature (Kahn et al., 2011), humidity
(Kahn et al., 2011; Pressel and Collins, 2012), cloud water
(Davis et al., 1996), and other variables. We expect that
the results from such studies can be used to constrain or
even develop scale-aware parameterizations. For example,
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if scale-invariance can be demonstrated for the product of
temperature or humidity with the wind components, then a
description of the resolution-dependence of horizontal eddy
fluxes would naturally follow. This information could then
be used to develop an explicitly resolution-dependent hori-
zontal eddy flux (diffusion) parameterization. Future scale-
aware parameterization development efforts should make
strong use of observations of scale invariance and scale de-
pendence.
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